A Rough Cluster Analysis of Shopping Orientation Data
نویسندگان
چکیده
This paper describes the application of a new technique, rough clustering, to the problem of market segmentation. Rough clustering produces different solutions to k-means analysis because of the possibility of multiple cluster membership of objects. Traditional clustering methods generate extensional descriptions of groups, that show which objects are members of each cluster. Clustering techniques based on rough sets theory generate intensional descriptions, which outline the main characteristics of each cluster. In this study, a rough cluster analysis was conducted on a sample of 437 responses from a larger study of the relationship between shopping orientation (the general predisposition of consumers toward the act of shopping) and intention to purchase products via the Internet. The cluster analysis was based on five measures of shopping orientation: enjoyment, personalization, convenience, loyalty, and price. The rough clusters obtained provide interpretations of different shopping orientations present in the data without the restriction of attempting to fit each object into only one segment. Such descriptions can be an aid to marketers attempting to identify potential segments of consumers.
منابع مشابه
Comparing school bonding in different motivational profile in students: a person-centered analysis
the present study aimed to determine the motivational profiles (clusters) of students and to compare their school bonding considering these profiles. This study was conducted with a comparative-descriptive method. The participants were 217 high school students who completed the Rezaiisharif and colleague school bonding Questionnaire and Elliot and Mcgregor Goal oriented achievement Questionnair...
متن کاملA Non-radial rough DEA model
For efficiency evaluation of some of the Decision Making Units that have uncertain information, Rough Data Envelopment Analysis technique is used, which is derived from rough set theorem and Data Envelopment Analysis (DEA). In some situations rough data alter nonradially. To this end, this paper proposes additive rough–DEA model and illustrates the proposed model by a numerical example.
متن کاملMining Associations for Interface Design
Consumer research has indicated that consumers use compensatory and non-compensatory decision strategies when formulating their purchasing decisions. Compensatory decision-making strategies are used when the consumer fully rationalizes their decision outcome whereas non-compensatory decision-making strategies are used when the consumer considers only that information which has most meaning to t...
متن کاملA NON-RADIAL ROUGH DEA MODEL
There are situations that Decision Making Units (DMU’s) have uncertain information and their inputs and outputs cannot alter redially. To this end, this paper combines the rough set theorem (RST) and Data Envelopment Analysis (DEA) and proposes a non-redial Rough-DEA (RDEA) model so called additive rough-DEA model and illustrates the proposed model by a numerical example.
متن کاملSlack-Based Measurement with Rough Data
Rough data envelopment analysis (RDEA) evaluates the performance of the decision making units (DMUs) under rough uncertainty assumption. In this paper, new discussion regarding RDEA is extended. The RSBM model is proposed by integrating SBM model and rough set theory. The process of reaching solution is presented and this model is applied to efficiency evaluation of the DMUs with uncertain ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003